Standing Rigging

Synthetic Standing Rigging and Quality of Sleep

When you think about rigging, quality of sleep is probably the last detail on your mind. If you plan to do any kind of passage making, quality of sleep should become a priority in your desired attributes list for your rigging. Remember, the headstay attached right above the V-berth in the forward cabin!

Steel rigging with hank on sails or roller furling sails will present a problem to (trying to) sleep off-watch crew. The foil of the furler will constantly tap and shimmy on the stay, making constant racket that is transmitted right over their head! Bronze hanks are just as offensive in anything but high winds.

Bronze hanks in high winds will sit still and quiet down, but anything else will cause the hanks to shimmy and twist on the steel stay making a grating sound that will keep everyone under it awake!

Synthetic headstays are rope and not metal, making it quieter in terms of noise transmission. Then, to protect against chafe, the sail needs to be fitted with soft hanks which look like webbing straps that relocate the bronze hank to the side of the sail. Soft hanks on a synthetic headstay are completely silent!

The sail can be luffing, twisting, shimmying, anything; and the off-watch crew in the V-berth will sleep peacefully under the silence of the synthetic headstay.

Please like the post and share it with your friends

Neighbors at Anchor

IMG_2169.JPG

This morning, we awoke to a new neighbor!  

I am a huge fan of bowsprits and bumpkins because they add sail area to a yacht without allowing you to overload the boat with useless clutter!

This boat has a rather short waterline length with long overhangs that are composed of spars. The bowsprit moves the headstay forward of the stem, and the bumpkin moves the backstay aft of the transom.  

If these spars did not exist, the yacht would need to have a longer deck to reach the stay positions, and a longer deck means a longer hull. A longer hull means more interior space, and more interior space will give the opportunity to store unnecessary items that will weigh down the yacht and degrade its sailing capabilities. 

Having spars increase the LOA without a longer hull removes the temptation to keep more stuff on board. It also helps lower the cost of building the boat because a spar is easier and cheaper to build than a larger hull. This will give the yacht a larger sailplan on a smaller budget, and that means that he can sail in more conditions with greater ease. 

Please like the post and share it with your friends

Stay Angle to the Mast

Your standing rigging is there to support your mast and hold it up high into the sky. To do this, the stays need to be strong enough to withstand the loads and also setup at the correct angles to properly transmit these loads through the yacht. 

The minimum angle of a stay approaching a spar is 12 degrees. If the stay approaches the spar at an angle less than 12 degrees, the stay will not be able to exert the needed force on the spar to resist movement.  

Lowers are able to travel directly from the chainplate to the spar without any guidance because they approach at a wide angle, greater than 12 degrees. The further up the mast you go, the lower the angle would be and the less effective the stay would act. 

To fight this problem, spreaders are used to hold the stay out, allowing it to rise up vertically and then turn towards the mast, reaching it at an angle of at least 12 degrees. 

This same engineering tacktic can be seen on other areas of boats. Long bowsprits will have "Dolphin Strikers" which are spreaders for the bobstay, as well as spreaders for the whisker stays. These are all there to help achieve the needed minimum angle of 12 degrees of approach between any spar and stay. 

Please like the post and share it with your friends

Storm Sailplan

Storm sails are small and very strong sails that are flown in high winds. While the sails themselves are very strong, there is another aspect of the sails that adds to the survival of the storm without damage to the yacht: where the sails fly. 

IMG_2150.PNG

When a mast breaks during a storm, it almost always breaks off at the first spreader. This means that the spar above the spreader will buckle and break, leaving you with a shortened mast and a broken rig.

What you can learn from this disaster is that the section of the spar above the spreaders is not as strong as the section below the spreaders. It is not a matter of strength of the spar being weaker above the spreader as the spar is the same size and strength over its entire length, its a matter of how the rigging is setup. 

The lowers, which attach below the first spreader do not need a spreader to reach the mast at a good angle (minimum angle for the stay to approach the mast is 12 degrees) without any guidance. The run from chainplate to mast is the ideal angle. The run from chainplate to cap shroud is not as lucky, and the angle would be very small. This is why a spreader is needed to hold the stay outboard, so that it can then turn in towards the mast at an angle of no less than 12 degrees. 

The mast is only supported at a few points on a yacht, and these points are the areas where the stays attach. Your first unsupported length is from the deck to the first spreader. The second unsupported length is from the first spreader to the next set of stays. On a single spreader rig, the next supported section is the mast head. On a multiple spreader rig, it is the next spreader. 

The strongest unsupported section of the spar is the first section, from deck to spreader. Therefore, when loads are high and failure occurs, it occurs above this point, causing the mast to buckle at the first spreader. 

So, flying full sail in a storm is not only bad because you are applying too much strain to the sails, rigging, and yacht, but also because you are applying strain in the wrong areas. Full sail means that the mast is being loaded all the way to the top! The loads it will be subjected to are mind boggling! 

Reefing not only reduces the sail area to decrease the force on the yacht, but it also lowers the sail area, concentrating the loads to the first unsupported section of the spar. Storm sails take this one step further and concentrate the loads entirely to the first unsupported section. 

When you setup your trysail, the tack needs to be set so that it is higher than the stack height of the mainsail. This will allow it to flow easily on either tack. While you might feel inclined to simply add a longer tack pennant to clear the mainsail, it is important not to raise the trysail too high. 

The head of the trysail should end up in the area of the first spreaders, that way the loads are concentrated in the first unsupported span. Yes, the loads during a storm will be strong, but the strongest section of the spar is being loaded and the rest of the mast is simply along for the ride. 

Once the winds calm down, you can raise your full sail on your full spar, instead of trying to jury rig something with the stump of your mast that runs up to your first spreaders. 

Please like the post and share it with your friends

An Alternative Method to Tensioning Synthetic Standing Rigging

While passing through Carolina Beach, I met a fellow cruiser who had rigged his previous boat with synthetic standing rigging. He has since sold his ketch and moved onto a gorgeous wooden motor yacht. We got talking and he told me his innovative and wonderful method of tensioning his synthetic standing rigging. 

Instead of setting up a complicated pulley system that leads to a deck winch, he simply took a different tool and made his life easier. He used an electric fence wire tensioner. These tensioners cost him around $2 and are made of plastic. (http://www.kencove.com/fence/Wire+Tighteners_detail_SSDR.php) They lasted him a few years and were innexpensive enough to simply replace when the sun weakened them.

IMG_2131.JPG

The only caveat to this system is that you need a special tool that is used to tighten the wires with these devices. The tool has a square end that inserts into the device and has long handles on it. The handles are long enough that he felt it easy to tension his standing rigging without over exerting himself.

IMG_2132.JPG

To tension his rigging, he would tighten the lashings by hand as much as he could and then tie them off. He then slipped the plastic tensioner onto one of the lashings and set it in the slot that is cut for a wire to pass through. 

IMG_2138.PNG

With the tensioner slipped over the lashing, he would then insert the tool and begin winding the lashing around the tensioner. This system is genius because it uses a massive leverage advantage to collect the lashing line and generate the tension needed. This not only makes it easy to setup the rigging, but also quick to adjust the standing rigging as all you need to do is insert the tool and spin it as needed! 

IMG_2133.JPG

Once the tension needed is achieved, a simple pin is inserted to hold everything in place. The pin prevents the tensioner from spinning and unspooling, holding your rigging in place! There are no knots to tie or pulley systems to setup. Simply insert the tool into the key hole and spin until its perfect! 

Yes, the tensioner is made out of plastic and dies after a few years, but the unit costs around $2 and is easy and cost effective to replace when compared to all the time that it will take to tension your standing rigging using the Shroud Frapping Knot.  

If you are considering switching to synthetic standing rigging but concerned that the Shroud Frapping Knot is too complicated for you to learn, this is an easy alternative that achieves the same result of a properly tuned rig with much less involvement and effort. 

Please like the post and share it with your friends